J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
[Crossref]

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
[Crossref]

N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
[Crossref]

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.

E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
[Crossref]

E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel,” in International Image Sensor Workshop (2007).

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
[Crossref]

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
[Crossref]

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.

E. R. Fossum, “Image sensor using single photon jots and processor to create pixels,” U.S. patent8,648,287 B1 (May26, 2006).

E. R. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), paper JTuE1.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

R. M. Guidash, “Solid state image sensor with fast reset,” U.S. patent5,338,946 A (January8, 1993).

R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
[Crossref]

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

S. M. Sze, Semiconductor Sensors (Wiley, 1994), Vol. 55.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
[Crossref]

N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
[Crossref]

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
[Crossref]

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
[Crossref]

N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
[Crossref]

D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
[Crossref]

E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
[Crossref]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.

S. M. Sze, Semiconductor Sensors (Wiley, 1994), Vol. 55.

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel,” in International Image Sensor Workshop (2007).

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.

R. M. Guidash, “Solid state image sensor with fast reset,” U.S. patent5,338,946 A (January8, 1993).

E. R. Fossum, “Image sensor using single photon jots and processor to create pixels,” U.S. patent8,648,287 B1 (May26, 2006).

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

E. R. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), paper JTuE1.

R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).


Click here to open external link

Dartmouth engineers develop image sensor that can resolve individual photons of light